What does e-mobility mean for progressive die stamping? Here’s our perspective.


E-mobility and battery electric vehicles are a hot topic lately. According to a recent issue of Today’s eMobility, major automakers have announced or begun $11.6 billion in plant investments in 2020 to support electric vehicles (EVs). And then there’s GM’s recent announcement of their intention to eliminate tailpipe emissions from their new light-duty vehicles by 2035. And in daily life, battery-electric and hybrid vehicles seem to show up in more and more streets, parking lots, and garages around the world.

With the potential to turn the auto industry on its head, not to mention the countless suppliers, OEMs, vendors, and workers that support it, manufacturers need to look ahead and plan for the consequences. In the post, we’ll share our take on electric car basics and the implications for progressive die stamping.

What You Need to Know About Metals in Precision Stamping

custom stamped parts

Precision stampers use many types of metals, including aluminum alloys, brass alloys, copper, nickel, steel, stainless steel, silver, and bronze. How do you know which is the right material for each project? It has to do with a variety of mechanical and chemical properties that determine how a given metal will behave during stamping and in the finished product. Designers, engineers, and stampers need to work together to find the right balance between satisfying design intent and manufacturability of a part. Metal properties also impact the manufacturing process itself, including selecting the best tool steel, stamping oils, and plating or other finishing.

Some of the most important properties to consider are discussed listed below; however, there may be additional considerations depending on your specific application.

Does It Work Online? Observations from a Standards Certification Audit in the Virtual Environment


If you think back to the beginning of this year, almost nothing is the same as it used to be. There are countless examples in manufacturing and industry alone. One we recently experienced is a facility audit.

Initial certification and recertification audits are generally conducted by an independent auditor who visits the facility to review documentation, observe production, and interview employees; however, in-person visits have been sharply curtailed during the current COVID-19 pandemic. Thanks to technology, manufacturers and auditors have been able to continue the audit process. We’ll also share our insights from a recent virtual audit at our Texas facility.

The 5G Network Brings Challenges for Designers and Precision Stampers


Most of us have heard of 5G and know it’s on the horizon. 5G refers to the fifth generation of network connectivity between devices. We commonly think about cell phones in this context but it includes any object (e.g. computer, car, appliance) connected to the Internet of Things (IoT) that can transmit and receive data. The exact timeline for its arrival is unclear, but there is definitely forward momentum. For example, “the share of 5G-connected cars that are actively connected to a 5G service will grow from 15% in 2020 to 74% in 2023, reaching 94% in 2028,” according to Gartner .

What will 5G look like when it arrives, and what does it mean for precision stamping? Read on.

The Basics of EMC Testing for Electronic Devices

Electromagnetic and radio frequency interference shielding is concerned with the “noise” and electromagnetic emissions from signals and currents inside electronic devices. Electronic devices can impact how nearby devices function and they can be susceptible to emissions from other neighboring devices.

The effects of interference range from annoying (e.g. static on the radio) to life-threatening (e.g. malfunctioning aircraft controls or electronic breaking signals).

What’s the Deal with Packaging? Tape and Reel Encapsulation to Protect Parts

Precision stamped components need to be in an assembly-ready condition when they leave the stamper’s facility, and they need to stay in that condition during transportation and storage and until the customer needs them. Moving components between facilities and general handling present many risks to that assembly-ready condition the stamper achieved. That’s why careful packaging is such an important part of the stamping process.

Transfer your tooling or manufacture new? Tips for switching to a new progressive stamper

Change is inevitable in manufacturing. Whether you’re bringing a new product to market, re-engineering an existing one, or just need to find another supplier for your components, chances are you’ll have to switch from one progressive stamper to another at some  point in time.

4 Ways to Get the Most Out of Your Next Prototyping Project

Most new parts change several times as they evolve from a conceptual drawing to a physical object in the real world. By the time a new part is ready for prototyping, you’ve made drawings, calculations, and prepared extensive documentation (and if you’re working within the automotive industry, you’ve also spent countless hours on the Production Part Approval Process, or PPAP). And now it’s time for functional testing or evaluating fit within an assembly.