Skip To Content

Blog

How Do Skin Effect and Skin Depth Impact EMI/RFI Shielding?

Electromagnetic and Radio frequency interference (EMI/RFI) shield design is complex and multi-faceted, combining electrical and mechanical engineering concepts. In practice, shielding is very much an iterative process in which controlling one variable impacts another, leading to even more changes in the design. One aspect of shield design is knowing which external signals are most critical…

What’s the Deal with Packaging? Tape and Reel Encapsulation to Protect Parts

Precision stamped components need to be in an assembly-ready condition when they leave the stamper’s facility, and they need to stay in that condition during transportation and storage and until the customer needs them. Moving components between facilities and general handling present many risks to that assembly-ready condition the stamper achieved. That’s why careful packaging…

The Impact of Electromagnetic and Radiofrequency Interference (EMI/RFI)

Electronic devices are everywhere these days – from your cell phone to your garage door opener, to the sensors on the security cameras at the grocery store. They’re controlled by internal circuit boards, which send and receive signals with instructions about what to do (i.e. display the phone’s home screen, send power to the garage…

How does cavity resonance affect EMI/RFI shielding?

Electronic devices and the circuit boards that control them are trending smaller and faster all the time. High-speed applications operate at increasing frequencies within the radio and microwave ranges of the electromagnetic (EM) spectrum. The result is slick consumer and industrial electronics but the challenge for designers lies in controlling EM radiation emissions and the impact they can have on performance.